A Perspective on Florida's Large-Scale Wetland Treatment Systems for Phosphorus Removal


Thomas A. DeBusk¹ and William F. DeBusk²

¹DB Environmental, Inc. ²Water Resources Group, LLC

Some large Florida treatment wetlands have been in operation for 25 years

TOPICS
Timeline
Performance
Interesting attributes

1980's (total treatment wetland area ~ 1,000 ha)

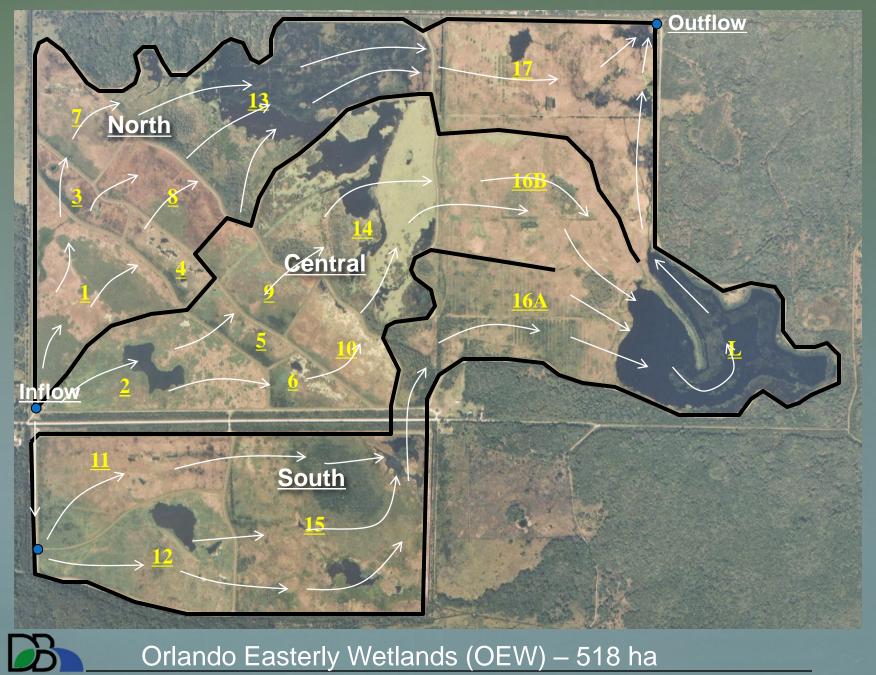
- Municipal wastewater treatment
 - Orlando Easterly (518 ha)
 - Orange Co. Eastern Service Area (134 ha)
- Eutrophic Lake Waters
 L. Apopka marsh (310 ha)

1990's (total treatment wetland area ~ 6,600 ha)

- Municipal wastewater treatment
 - Orlando Easterly (518 ha)
 - Orange Co. Eastern Service Area (134 ha)
 - Bayou Marcus (190 ha)
 - Other (~ 500 ha)
- Eutrophic Lake Waters
 - L. Apopka marsh (310 ha)
- Runoff (agricultural, etc)
 - Everglades Nutrient Removal Project (STA pilot) (1,540 ha)
 - STAs 5 and 6 (3,400 ha)

2000's (total treatment wetland area ~19,500 ha)

- Municipal wastewater treatment
 - Orlando Easterly (518 ha)
 - Orange Co. Eastern Service Area (134 ha)
 - Bayou Marcus (190 ha)
 - Other (~500 ha)
- Eutrophic Lake Waters
 - L. Apopka marsh (310 ha)
- Runoff (agricultural, etc)
 - Six Everglades STAs (17,800 ha)

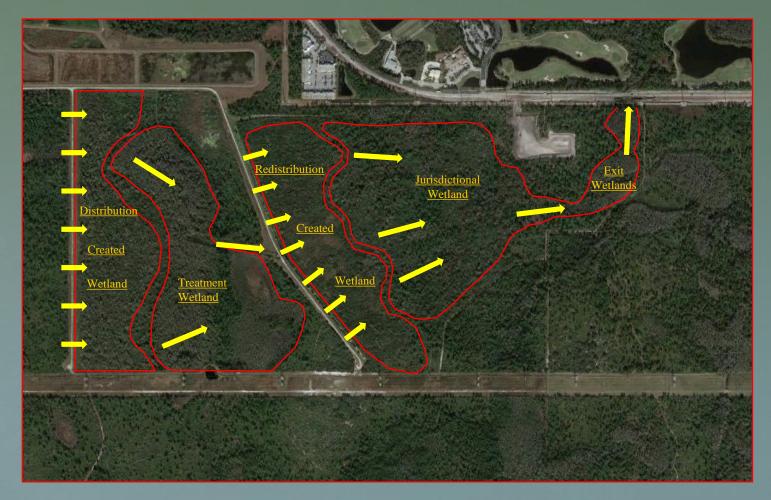


Municipal Treatment Wetlands – Initial performance, and recent five year (2006-2010) [TP] data

Initial 6 months of OEW operations (1987 – 1988) Mean inflow TP = 520 μ g/L; mean outflow TP = 120 μ g/L

Initial 3 yrs of OCESA operations (1988 - 1991) Mean inflow TP = $210 - 500 \mu g/L$; mean outflow TP = $130 \mu g/L$

Recent 5 yr. Performance	OEW	OCESA
Mean P Loading Rate (g/m2·yr)	0.76	1.52
Mean P Removal Rate (g/m2·yr)	0.48	0.65
Mean Inflow TP (µg/L)	220	210
Mean Outflow TP (µg/L)	80	120
% Removal	63	43



Orlando Easterly Wetlands (OEW) - 518 ha

Interesting attributes of OEW

- Highly compartmentalized
 - Required to accommodate site elevations
 - Multiple flow paths
 - Multiple cells per flow path
 - Spatial differences in water depths
 - Variety of vegetation communities
- Extensive testing/implementation of soil and vegetation management techniques
- Provided critical design information for Everglades Nutrient Removal Project

Orange Co. Eastern Service Area Wetlands (OCESA) ~ 134 ha

Interesting attributes of OCESA

- Hydrid system
 - Two constructed wetlands – different depths/hydroperiods
 - Two natural, forested wetlands
- Extensive vegetation and soils characterization first 3 - 5 yrs of operation

OCESA Vegetation Communities

 Extensive initial planting of constructed wetlands (13 species, 336 plants/ha)

Only one species (S. lancifolia) still present at year 4

- Different hydroperiods of wetlands selected for different vegetation palettes
 - shallow Baccharis, Myrica, Hydrocotyle
 - deeper Hydrocotyle, Panicum, Typha

Everglades STAs

STA Performance (five year mean)

	STA-1E	STA-1W	STA-2	STA-3/4	STA-5	STA-6
Area (ha)	1630	2700	3340	6700	2500	913
Start-up Date	2004	2000	1999	2003	1998	1997
Mean P Loading (g/m2⋅yr)	1.28	1.92	1.13	0.87	0.98	1.28
Mean P Removal Rate (g/m2⋅yr)	0.94	1.37	0.84	0.75	0.63	0.96
Mean Inflow TP (µg/L)	180	221	116	115	221	131
Mean Outflow TP (µg/L)	44	51	28	17	80	49
% Removal	75	75	74	85	66	72

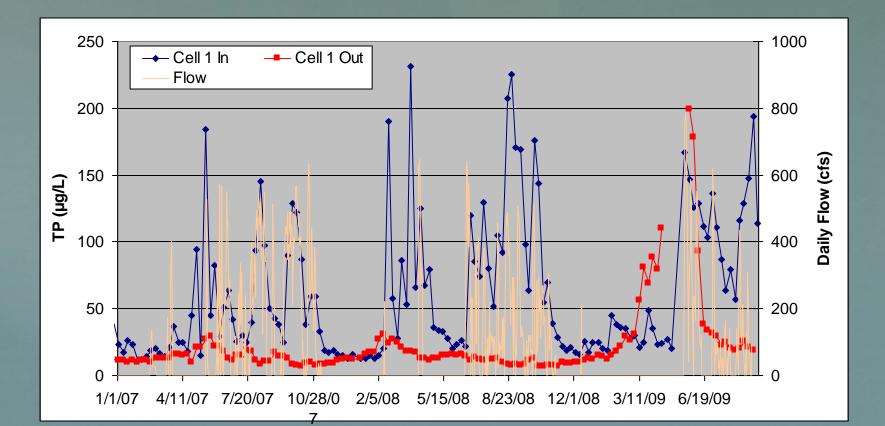
WY2007 - WY2011 (May 2006 - April 2011)

Interesting attributes of STAs

- Extremely low outflow TP targets
- Multiple flow paths, often multiple cells per FP
- Initial emergent plantings attempted, but unsuccessful
- Sequenced vegetation communities (EAV then SAV), control by water depth/hydroperiod

Attributes of STAs

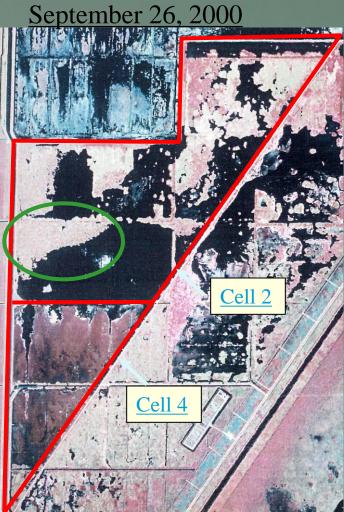
- Accretion of high calcium (~25%) sediments in SAV cells
- Some SAV cells remove ~ 500g Ca/m²-yr



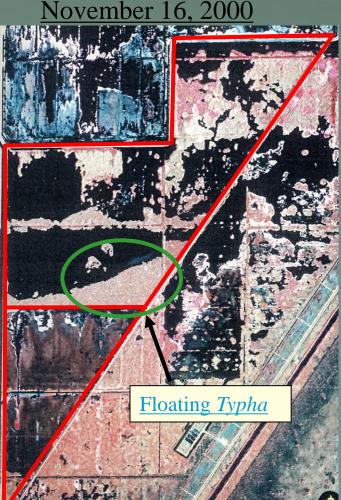
Attributes of STAs

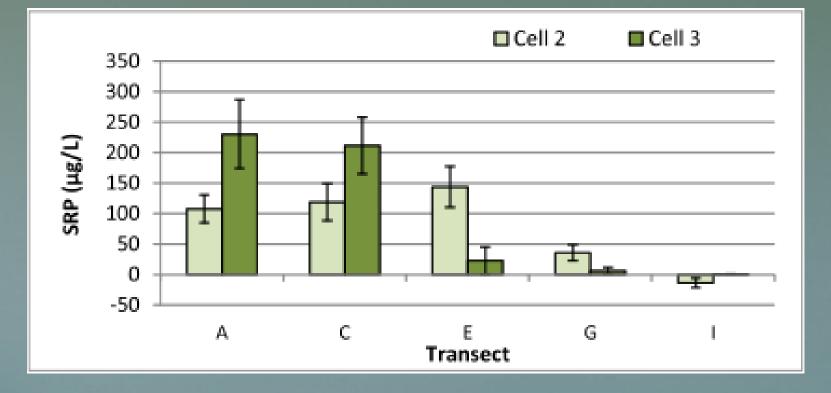
Inflows flashy, depth regimes variable

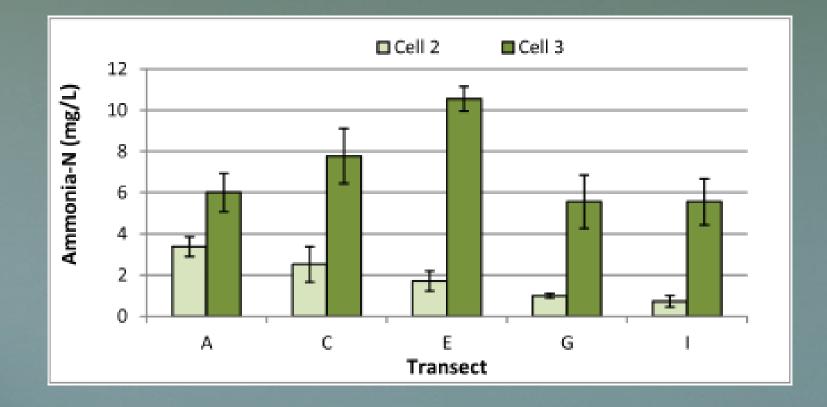
 Periodic drydowns can adversely impact performance


STA attributes

Drydown effects are quite pronounced for SAV cells




SAV attributes: Control of max water depth critical- floating cattail islands can destroy SAV beds and impair performance



STA attributes: pronounced chemical gradients in water column and soils (e.g. STA-2 porewater SRP)

STA attributes: strong influence of vegetation type on soil characteristics (e.g. STA-2 porewater ammonia)

Summary

- 25 yrs of exhaustive research on large treatment wetlands in Florida
 - OEW Mark Sees, City of Orlando; Univ. FL; DBE
 - OCESA Larry Schwartz, CDM-Smith; Pete Wallace Ecosystem Research Corp; Univ. FL
 - STAs SFWMD; DBE
- Expansion/proliferation of these large wetlands is likely
 - Everglades protection
 - Effective tool for meeting stringent numeric nutrient criteria

